Skip to main content

Java Virtual Machine - The Heap

Whenever a class instance or array is created in a running Java Application, the memory for the new object is allocated from a single heap. As there is only one heap inside a java Virtual Machine instance, all threads share it. Because a java Application runs inside its "own" exlcusive java Virtual Machine instance, there is a separate heap for every individual running application.

One possible heap design divides the heap into two parts: a handle pool and an object pool. An object reference is a native pointer to a handle pool entry. A handle pool entry has two components: a pointer to instance data in the object pool and a pointer to class data in the method area. The advantage of this scheme is that it makes it easy for the virtual machine to combat heap fragmentation. When the virtual machine moves an object in the object pool, it need only update one pointer with the object's new address : the relevant pointer in the handle pool. The disadvantage of this approach is that every access to an object's instance data requires dereferencing two pinters - ptr into object pool and ptr to class data.

When a running program attempts to cast an object reference to another type, the virtual machine must check to see if the type being cast to is the actual class of the referenced object or one of its supertypes.

Garbage Collection: a garbage collector's primary function is to automatically reclaim the memory used by objects that are no longer referenced by the running application. It may also move objects as the application runs to reduce heap fragmentation.



Comments

Popular posts from this blog

Quicksort implementation by using Java

 source: http://www.algolist.net/Algorithms/Sorting/Quicksort. The divide-and-conquer strategy is used in quicksort. Below the recursion step is described: 1st: Choose a pivot value. We take the value of the middle element as pivot value, but it can be any value(e.g. some people would like to pick the first element and do the exchange in the end) 2nd: Partition. Rearrange elements in such a way, that all elements which are lesser than the pivot go to the left part of the array and all elements greater than the pivot, go to the right part of the array. Values equal to the pivot can stay in any part of the array. Apply quicksort algorithm recursively to the left and the right parts - the previous pivot element excluded! Partition algorithm in detail: There are two indices i and j and at the very beginning of the partition algorithm i points to the first element in the array and j points to the last one. Then algorithm moves i forward, until an element with value greater or equal

Live - solving the jasper report out of memory and high cpu usage problems

I still can not find the solution. So I summary all the things and tell my boss about it. If any one knows the solution, please let me know. Symptom: 1.        The JVM became Out of memory when creating big consumption report 2.        Those JRTemplateElement-instances is still there occupied even if I logged out the system Reason:         1. There is a large number of JRTemplateElement-instances cached in the memory 2.     The clearobjects() method in ReportThread class has not been triggered when logging out Action I tried:      About the Virtualizer: 1.     Replacing the JRSwapFileVirtualizer with JRFileVirtualizer 2.     Not use any FileVirtualizer for cache the report in the hard disk Result: The japserreport still creating the a large number of JRTemplateElement-instances in the memory        About the work around below,      I tried: item 3(in below work around list) – result: it helps to reduce  the size of the JRTemplateElement Object        

Stretch a row if data overflows in jasper reports

It is very common that some columns of the report need to stretch to show all the content in that column. But  if you just specify the property " stretch with overflow' to that column(we called text field in jasper report world) , it will just stretch that column and won't change other columns, so the row could be ridiculous. Haven't find the solution from internet yet. So I just review the properties in iReport one by one and find two useful properties(the bold  highlighted in example below) which resolve the problems.   example: <band height="20" splitType="Stretch" > <textField isStretchWithOverflow="true" pattern="" isBlankWhenNull="true"> <reportElement stretchType="RelativeToTallestObject" mode="Opaque" x="192" y="0" width="183" height="20"/> <box leftPadding="2"> <pen lineWidth="0.25"/>